Extensions 1→N→G→Q→1 with N=C6 and Q=C32:C6

Direct product G=NxQ with N=C6 and Q=C32:C6
dρLabelID
C6xC32:C6366C6xC3^2:C6324,138

Semidirect products G=N:Q with N=C6 and Q=C32:C6
extensionφ:Q→Aut NdρLabelID
C6:(C32:C6) = C2xHe3:4S3φ: C32:C6/He3C2 ⊆ Aut C654C6:(C3^2:C6)324,144

Non-split extensions G=N.Q with N=C6 and Q=C32:C6
extensionφ:Q→Aut NdρLabelID
C6.1(C32:C6) = C32:Dic9φ: C32:C6/He3C2 ⊆ Aut C6108C6.1(C3^2:C6)324,8
C6.2(C32:C6) = C33:C12φ: C32:C6/He3C2 ⊆ Aut C6366-C6.2(C3^2:C6)324,14
C6.3(C32:C6) = He3.Dic3φ: C32:C6/He3C2 ⊆ Aut C61086-C6.3(C3^2:C6)324,16
C6.4(C32:C6) = He3.2Dic3φ: C32:C6/He3C2 ⊆ Aut C61086-C6.4(C3^2:C6)324,18
C6.5(C32:C6) = C2xC32:D9φ: C32:C6/He3C2 ⊆ Aut C654C6.5(C3^2:C6)324,63
C6.6(C32:C6) = C2xC33:C6φ: C32:C6/He3C2 ⊆ Aut C6186+C6.6(C3^2:C6)324,69
C6.7(C32:C6) = C2xHe3.S3φ: C32:C6/He3C2 ⊆ Aut C6546+C6.7(C3^2:C6)324,71
C6.8(C32:C6) = C2xHe3.2S3φ: C32:C6/He3C2 ⊆ Aut C6546+C6.8(C3^2:C6)324,73
C6.9(C32:C6) = C33:4C12φ: C32:C6/He3C2 ⊆ Aut C6108C6.9(C3^2:C6)324,98
C6.10(C32:C6) = C32:C36central extension (φ=1)366C6.10(C3^2:C6)324,7
C6.11(C32:C6) = He3:C12central extension (φ=1)363C6.11(C3^2:C6)324,13
C6.12(C32:C6) = He3.C12central extension (φ=1)1083C6.12(C3^2:C6)324,15
C6.13(C32:C6) = He3.2C12central extension (φ=1)1083C6.13(C3^2:C6)324,17
C6.14(C32:C6) = C2xC32:C18central extension (φ=1)366C6.14(C3^2:C6)324,62
C6.15(C32:C6) = C2xC3wrS3central extension (φ=1)183C6.15(C3^2:C6)324,68
C6.16(C32:C6) = C2xHe3.C6central extension (φ=1)543C6.16(C3^2:C6)324,70
C6.17(C32:C6) = C2xHe3.2C6central extension (φ=1)543C6.17(C3^2:C6)324,72
C6.18(C32:C6) = C3xC32:C12central extension (φ=1)366C6.18(C3^2:C6)324,92

׿
x
:
Z
F
o
wr
Q
<